Mission :
Au sein du laboratoire ICMN, une unité mixte de recherche Université d'Orléans - CNRS, située sur le campus CNRS d'Orléans, le candidat aura pour mission de mener des travaux portant sur la caractérisation multi-échelle de suies. La production des suies sera assurée par le laboratoire voisin ICARE - CNRS (UPR3021), partenaire du projet. La caractérisation sera effectuée au moyen de plusieurs techniques expérimentales complémentaires (microscopie électronique en transmission (TEM), diffusion des rayons X aux petits angles (SAXS) au laboratoire ICMN, sur synchrotron (UMR7374) et sur la plateforme de MACLE (Microscopies, imAgeries et ressourCes anaLytiquEs). Les images et les données SAXS seront exploitées en développant des méthodes d'analyse d'image et d'Intelligence Artificielle adaptées à l'étude microstructurale des particules primaires et leur organisation 3D au sein des agrégats. Les relations qui pourront être établies entre les paramètres de synthèse en réacteur et les caractéristiques des suies formées seront utiles pour valider des modèles cinétiques permettant de prévoir la formation des CNP pour les applications industrielles et de sécurité.
Activités :
A partir de CNP produites par le laboratoire ICARE en tubes à chocs dans des conditions thermodynamiques couvrant une large gamme de température et de pression et en explorant divers combustibles et mélanges et d'oxygène, plusieurs méthodes avancées de caractérisation seront utilisées par le candidat afin d'étudier les différents niveaux d'organisation des CNP, depuis la structure interne des particules primaires jusqu'aux caractéristiques des agrégats (morphologie, taille et dimension fractale) : expériences SAXS à haut flux et microfaisceaux à l'ICMN combinées avec des mesures SAXS, spectroscopie Raman, TEM/STEM sur ICMN CM20 et TEM/STEM sur la plateforme MACLE CVL. Le candidat sera amené également à participer à des campagnes expérimentales sur synchrotron (SOLEIL).
L'accès à la morphologie complexe des agrégats 3D et à la structure interne des particules primaires nécessiteront le développement de la modélisation des profils SAXS et l'analyse numérique des images MET. En outre, afin d'étudier l'influence des différents paramètres (T, P, Carburant, %O2) une méthode d'apprentissage par Deep Learning sera développée pour accéder plus rapidement aux caractéristiques de la morphologie 3D des CNP. La méthode commencera par simuler numériquement des morphologie fractale 3D de CNP (Algorithme Monte Carlo) afin de générer les images MET correspondantes, et fournir une collection d'images pour une analyse automatique ultérieure des images TEM expérimentales.
Experience: Débutant accepté
En cliquant sur "JE DÉPOSE MON CV", vous acceptez nos CGU et déclarez avoir pris connaissance de la politique de protection des données du site jobijoba.com.